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An experimental study of the dynamic response of non-rotating, stratified reservoirs 
to the application of surface shear stresses is presented. The experiments were made 
using two-layered and linear stratifications; a moving belt was used to supply a shear 
stress to the fluid. Detailed measurements of the density field show that upwelling 
occurs at all values of the Wedderburn number, W ,  rather than only occurring when 
W < 1. Differences between the two-layer theory and the present observations are 
attributed to the fact that the experimental stratifications were continuous, rather 
than layered. Shearflow dispersion is observed to be an important mechanism for 
distributing the effects of localized upwelling over the entire length of the mixed 
layer. A model of mixed-layer deepening based on upwelling and shearflow dispersion 
is presented and is compared to the observations of this and other experimental 
studies. 

1. Introduction 
Wind plays a major role in determining the thermal structure of many reservoirs 

and lakes. The energy imparted by the wind to the water column can result in both 
turbulent mixing of the temperature field with the concomitant redistribution of any 
surface heat fluxes, and in baroclinic motions which temporarily distort the 
temperature field. The purpose of this paper is to report an experimental study of 
the interaction of mixing and motions, particularly the way in which mixing results 
from motions associated with upwelling. This information can then be used to decide 
under what circumstances one-dimensional models of mixed-layer dynamics (e.g. 
Stefan & Ford 1975; Spigel, Imberger & Rayner 1985) might be applicable. Because 
upwelling mainly represents the attempt of the lake to balance the surface shear 
stress through the creation of horizontal pressure gradients associated with sloping 
isopycnals, the dynamic aspects of the response, rather than the mixing per se, will 
be the focus of the discussion which follows. 

Analytical theories (Heaps & Ramsbottom 1966; Monismith 1985) of the inviscid 
response of an n-layered lake or reservoir to a wind stress having the form: 

where u i  is the kinematic shear stress measured in the water, and H ( t )  is the 
Heaviside step function, show that the response consists of a steady state solution 
characterized by tilting of the free surface and some or all n interfaces, and of a set 
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x = o  x = L  

FIGURE 1 .  Definition sketch for the model n-layered reservoir. The case n = 3 is shown. 

of n periodic deflections (seiches) of some or all n interfaces. The assumption that the 
shear stress vanishes below the interface closest to the free surface leads to the simple 
result, valid for all n, that  only the free surface and internal interface closest to the 
free surface are tilted a t  steady state (Monismith 1985). Referring to figure 1 ,  where 
the case n = 3 is shown, the slope of the first internal interface is found to  be 
(Hellstrom 1941 ; Monismith 1985) 

where el2 = (p, -p2) /po and po is the average density of the water column. Wu (1977) 
presents experimental evidence confirming ( 2 ) .  

Most of these analyses of the unsteady response have used n = 2 (Wedderburn 
1912; Heaps & Ramsbottom 1966; Spigel & Imberger 1980); these give only one 
fundamental internal seiche mode, having a period 

In this mode of motion, the two layers move in opposition, creating shear between 
the two layers. Seiches having periods TJm, where m is an arbitrary integer, are also 
possible, but usually the response is dominated by motions having the fundamental 
period q. I n  general, an n-layered lake will possess (n- 1) baroclinic modes having 
different vertical structure and periods (Lighthill 1969). 

Spigel & Imberger (1980; hereinafter referred to  as SI), were the first to combine 
a dynamical model of the response with a one-dimensional model of mixed-layer 
deepening. Using an integral energy model of mixed-layer dynamics and the case 
n = 2, they showed that the strength of the interaction between mixing and motions 
is determined by the relative importance of the t w o  sources of turbulent kinetic energy 
(TKE) and depends on the Richardson number 

and the aspect ratio A = L / h , .  Their results are best summarized in terms of a 
combined parameter, the Wedderburn number (Thompson & Imberger 1980), 
defined as 

W = Ri A-l. (5 )  
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Simply put, the Wedderburn number is the seiche/set-up amplitude (for n = 2) 
non-dimensionalized by the mixed-layer depth; i.e. it is the usual measure of 
nonlinearity of long internal waves. 

According to SI, when W > 1 ,  the seiche response is unaffected by mixed-layer 
deepening which is predominantly by means of stirring of the surface layer (Kraus 
& Turner 1967; Wu 1973). If W < 1, the unsteady interfacial shear contributes 
significantly to the mixing process; for sufficiently small W, shear mixing (Pollard, 
Rhines & Thompson 1973) and Kelvin-Helmholtz billowing are the dominant 
processes. In  this case, the seiche can be overdamped by mixing of momentum 
between the two layers. Kranenburg’s (1984) laboratory experiments at W -4 1 show 
excellent agreement between measured rates of mixed-layer deepening and those 
predicted by SI. However, as noted by SI, the mixed-layer depth can be expected 
to vary considerably over the length of the reservoir when W - 1, since according 
to (2), interfacial displacements O(h, W-l) - h, are expected to occur. At the very 
least, Ri,  and hence entrainment rates, should vary considerably along the length 
of the reservoir (Kranenberg 1985). Thus the one-dimensional model of mixed-layer 
dynamics may not be entirely accurate. 

Imberger (1985) presents field observations of the dynamics of the mixed layer in 
Wellington Dam, Western Australia which confirm SI’s analysis. It should be noted 
that while Imberger (1985) used SI’s two-layer results, the measured stratification 
was far from two-layered. W was defined using the difference in density between the 
mixed-layer and the fluid immediately beneath, and the mixed-layer depth. If W had 
been based on the total charge in density over the entire water column and upon the 
depth of the seasonal thermocline (which possessed the largest density jump), i.e. 
upon a two-layer represenhtion of the whole density profile, it  would have been 
several orders of magnitude larger. 

Thus, if g’ and h, can be correctly chosen, SI’s theory provides a useful model 
of one-dimensional deepening processes in stratified reservoirs. It is apparently 
applicable for W 4 1 and W % 1, since in both cases the mixed-layer base remains 
horizontal. Two questions remain: What happens when W x 1 and how are appro- 
priate values of g’ and h, to be chosen? More importantly, where the interface 
actually surfaces, or, equivalently, the lower layer upwells, a different mixing 
mechanism, one which is entirely two-dimensional might be observed. 

Keulegan & Brame (1960) described such a mechanism, later termed ‘edge 
leakage’ by Blanton (1973). The situation at  the upwelling front is sketched in figure 
2. Upwelled fluid is incorporated into the near-surface drift and flows over lighter 
surface waters, leading to density inversions and thus to turbulence and mixing. 
Keulegan & Brame’s (1960) laboratory results show horizontal density gradients in 
the mixed layer at all values of Win the range 0.35 < W < 10, implying some form 
of upwelling can occur for W > 1 .  Thompson & Imberger’s (1980) (also Church & 
Thompson 1982) numerical simulations also showed signs of upwelling at W = 4. 

This experimental and numerical evidence of upwelling at W > 1 cannot be 
explained within the framework of the two-layer theory; however, it can be easily 
explained through the use of a simple, heuristic argument, based on the n-layer case. 
Any real stratification will be continuous or a t  least layered on a scale much less than 
the total depth of the reservoir (e.g. as reported in Imberger 1985), hence the number 
of layers required to accurately model the stratification should be quite large. Thus 
the density jump e12 will be much less than the total vertical density contrast and 
in like fashion, h, will be much less than H. Upwelling of fluid from the second layer 
will then take place for wind streses much weaker than those required to produce 
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FIQURE 2. Sketch of upwelling region showing ‘edge leakage’ (after Blanton 1973). 

upwelling in a two-layered representation of the stratification. Furthermore, if the 
stratification is truly continuous, n should be infinite. However, as the number of 
layers used to represent the stratification is made larger, the density difference eI2 
becomes smaller, as does W. Clearly n could be chosen such that W = 1. 

This simple argument can be rephrased into a more useful form as follows. If 
W is defined using overall parameters such as the distance from the free surface to 
the seasonal thermocline and the total density change from the water surface to the 
bottom of the reservoir, then fluid that is very close to the mixed-layer base will 
upwell when W % 1,  while bottom fluid will upwell when W < 1. The former will be 
termed partial upwelling while the latter will be referred to as total upwelling. Total 
upwelling is commonly associated with the fall overturn in lakes (Mortimer 1952; 
Stefan & Ford 1975). The analysis of the response of a continuously-stratified 
reservoir reported in Monismith (1986) shows that this heuristic argument is correct 
subject to the crucial assumption that the shear stress drops to zero at the base of 
the mixed layer. The justification for this assumption is that the stratification below 
the mixed layer supresses horizontal as well as vertical motions below the mixed layer 
a t  steady state via endwall blocking (see Turner 1973, pp. 79 f€).  This means that 
the stress must be zero where the density gradient is not zero. 

In order to test these conclusions concerning the occurrence of upwelling when 
W > 1, and to examine the nature of upwelling and its effect on mixing when W 
defined using bulk parameters is 0(1), a series of laboratory experiments waa 
performed. Rather than use wind stress, a belt was used to supply shear stress to fluid 
contained in a box and stratified either as two layers separated by a finite-thickness 
interface, or with a linear variation of density with height. The experimental appara- 
tus and procedures are described in $2. The experimental results are described in $3. 
Results concerning shear-flow dispersion and mixed-layer deepening are presented in 
$4. Conclusions are presented in $5. Lastly, a simple model of mixed-layer 
deepening based entirely on upwelling is developed in the Appendix. Analysis of the 
data in terms of the normal-mode response (Lighthill 1969) when W > 1 forms the 
basis of a separate publication (Monismith 1986). 

2. Experimental apparatus and procedures 
The experiments were performed using a belt to simulate the wind stress. This 

offers two advantages over using wind : first, the boundary conditions on the stressed 
surface are known; second, the belt speed and direction are easily controlled. The 
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FIanRE 3. The experimental apparatus. 

belt was mounted on the bottom of the tank rather than a t  the water surface to allow 
the conductivity probes to enter the fluid from above. Due to the presence of surface 
films, the free surface acted as a no-slip boundary. 

Because of the small density differences used in the experiments, application of the 
stress at  the bottom surface of the fluid rather than at the free surface should not 
significantly affect the results. In order to discuss the experimental results, it is 
however, necessary to redefine the term upwelling to mean a vertical flow downwards, 
i.e. towards the belt. Rather than the coordinate system shown in figure 1, the 
experimental coordinates will have z positive downwards, with the origin taken 
to be the free surface above the point where the belt enters the test section (which 
has coordinates x = 0, z = H). The term downwind thus means in the direction of 
increasing x while upwind means in the direction of decreasing x. 

The experiments were performed in a rectangular tank 4.0 m long, 305 mm wide, 
and with fluid depths ranging from 100 to 200 mm above the belt. The tank, shown 
in figure 3 (a) was divided into three sections : the test section (3.5 m long) and two 
Perspex boxes, one at each end of the test section. To eliminate extraneous mixing 
near the rollers, the test section was bounded on each end by double walls, allowing 
the belt to pass in and out of the test section while permitting only a small amount 
of fluid (approximately 1 ml s-l at the highest belt speeds) to be exchanged between 
the test section and the rest of the tank. This amount of leakage was sufficient to 
limit the experiments to no more than about 2000s.  The belt was supported 
underneath by a steel frame, coated with Teflon to minimize friction and was driven 
by a d.c. motor. Estimates of the stress between the fluid and the belt showed that 
the torques associated with friction in the seals on the belt would be much greater 
than any torques due to stress on the fluid; therefore, no attempt was made to use 
torque to measure the applied shear stress directly. 

Preliminary experiments showed that where the near-belt boundary layer was 
turned vertically by the endwall at x = 3.50 m, a narrow, intense jet formed. Mixing 
resulting from impingement of this jet on the interface appeared to be much more 
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vigorous than either mixing along the length of the interface, or mixing in the 
upwelling region (near x = 0). A similar flow pattern is clearly evident in Kosef & 
Street’s (1985) experimental observations. This mixing mechanism was considered 
to  be undesirable, as i t  appeared to  be an effect of the geometry of the corner a t  
x = 3.5 m, and not necessarily a mixing process which would be observed in nature. 
I n  order to suppress the jet, a 50mm thick piece of rubberized horsehair was 
mounted on the test-section side of the endwall a t  x = 3.50 m. 

Since salt was used to obtain density variations, the vertical distributions of 
density were obtained from periodic, vertical traverses of a set of 4 or 6 two-electrode 
conductivity probes (vertical resolution = 5 mm) mounted on a stepper-motor-driven 
rail extending the length of the tank. In  general, a single profile took approximately 
5 s  to complete. The length of time between profiles was generally no more than 
0.16 (15 s maximum) ; the conductivity measurements have quite good temporal 
resolution of the evolving density field. To avoid the effects of probe wakes, probe 
outputs were sampled only on downward traverses. A description of the design of 
the probes and associated circuitry (including multiplexers to eliminate groundloops) 
and the data acquisition system can be found in Monismith (1983). 

The experiments were performed as follows. The tank was first stratified and then 
left for 1 to 2 hours to allow residual motions to die out before proceeding. After 4 
profiles had been taken to establish the initial conditions, the motor was started, 
setting the belt in motion. I n  some experiments, photographs of a shadowgraph 
image of the central region were taken a t  regular intervals during the start-up phase. 
At a predetermined time the motor was stopped; profiling continued until the fluid 
came to rest. Once profiling was completed, the conductivity probes were calibrated, 
and the sampled voltages converted to  densities. 

A total of 25 experiments using two-layer and linear stratifications were performed. 
Tables 1 and 2 give experimetal data such as fluid depth, belt speed, and total density 
difference. Layer thicknesses for two-layered flows were calculated by assuming that 
the interface coincided with the point of the maximum density gradient. I n  all of 
what follows the term ‘ two-layer stratification ’ will refer to two homogeneous layers 
separated by a finite thickness interface (generally about 15 yo of the total depth). 
Because the stress was applied to the salt-water layer, h, was used in ( 5 )  to  calculate 
W rather than using h,. For experiments with linear stratifications, h, was set equal 
to ;fH and g’ = $NzH. This provides a convenient basis for comparing those experi- 
ments conducted with two-layered stratifications with those performed with linear 
stratifications. 

Calculation of W requires that the stress be known. The stresses reported in tables 
1 and 2 were calculated from the experimental data as follows. For experiments with 
W > 1, a t  steady state the hydrostatic pressure gradient associated with the 
perturbation density field balances the shear stress gradient in the mixed layer. Thus 
the shear stress can be deduced from measurements of the perturbation density field. 
Assuming the pressure is hydrostatic, and neglecting sidewall stresses and advective 
and unsteady accelerations, it can be shown (see Monismith 1983 for details) that  the 
mean shear stress, T ~ ,  applied to  the fluid by the belt between x, and x2 is found to 
be 

where p‘ (x i ,  z )  is the perturbation density a t  distance z below the free surface and 
distance xi from the origin. 

The accuracy of (6) depends on the size of errors introduced through neglect of 



Response of stratijied reservoirs to surface shear stress 413 

h2 
Experiment cm 

la 10.0 
16 10.0 
2 10.0 
5 12.0 
6 13.0 
7 10.0 
8 10.0 
9 12.0 

10 13.0 
16 5.0 
17 5.0 
18 5.0 
19 5.0 
20 6.0 
21 5.8 
22 8.5 
23 5.0 
24 5.0 
25 12.0 
33 3.0 
34 3.7 
35 4.0 

H 
cm 

20.0 
20.0 
20.0 
20.0 
20.0 
20.0 
20.0 
20.0 
20.0 
10.0 
10.0 
10.0 
10.0 
10.0 
15.0 
15.0 
10.0 
10.0 
20.0 
7.0 

12.0 
8.0 

€12 B 
em s - ~  
14.2 
14.2 
13.0 
13.6 
12.0 
13.2 
11.0 
18.3 
15.0 
10.0 
7.5 

10.0 
6.3 

10.0 
10.0 
10.0 
10.0 
10.0 
9.4 
9.4 
9.4 
7.8 

11.0 
21.7 
11.0 
18.5 
18.5 
14.0 
20.3 
15.0 
15.0 
13.0 
20.6 
26.4 
26.4 
13.7 
13.0 
21.3 
25.6 
22.5 
21.4 
11.5 
5.9 

20.3 

0.34 
1.18 
0.44 
0.70 
1.20 
0.50 
0.80 
0.90 
0.80 
0.70 
1.5 
2.3 
2.2 
0.60 
0.56 
1.2 
2.0 
1.6 
1 .o 
0.6 
0.25 
1.2 

Ri 

418 
120 
295 
233 
130 
264 
138 
244 
244 
71 
25 
23 
14 

100 
103 
69 
25 
31 

113 
47 

139 
26 

Llh2 
35 
35 
35 
29 
27 
35 
35 
29 
27 
70 
70 
70 
70 
58 
60 
41 
70 
70 
29 

116 
95 
88 

W 
11.9 
3.4 
8.4 
8.0 
4.8 
7.5 
3.9 
8.4 
9.0 
1 .o 
0.4 
0.3 
0.2 
1.7 
1.7 
1.7 
0.4 
0.4 
3.9 
0.4 
1.5 
0.3 

T, 
5 

622 
454 
655 

1713 
655 

2386 
874 

3930 
2134 
767 
773 
840 
368 
762 
762 

1188 
147 

1355 
2100 
448 
835 
960 

TABLE 1. Experimental programme : two-layer stratifications 
U ,  is the belt speed; T, is the amount of time which the belt was run during a particular 

experiment; Horsehair diffuser not used in experiments l a  to 6; u i  calculated using C, in 
experiments where W < 1. 

H h NPH UB u i  T, 
Experiment cm cm c m P  cm s-l cm2s-2 Ri LIH W 8 

15 10.0 1.5 9.4 25.4 2.2 43 35.0 0.4 779 
28 25.0 2.6 8.0 26.1 0.90 222 14.0 4.0 824 
29 20.0 2.5 8.5 8.1 0.20 800 17.5 12.0 1033 
30 20.0 5.0 6.1 14.0 0.70 173 17.5 2.5 1230 
31 20.0 10.0 5.0 26.2 2.2 45 17.5 0.7 148 
32 16.4 1.7 8.1 17.6 0.9 147 21.3 1.7 1143 

TABLE 2. Experimental programme : linear stratifications 
h is the thickness of the mixed layer adjacent to the belt at the start of the experiment; N2 is 

the buoyancy frequency squared = ( g / p )  (dpldz); Ri is calculated using (4), substituting H for h,; 
u: calculated using C,, in experiments 15 and 31. 

various terms in the z-momentum equation when performing the integrations 
leading up to (6), and on errors in measurement of the perturbation density field. The 
calculated kinematic shear-stress gradient is O(u$/h,) .  Advective accelerations are 
O(u$/L) (Keulegan 8z Brame 1960). Since they are O(h,/L)  times as large as the 
shear-stress gradient, their neglect introduces an error of approximately 5 % in the 
calculated stress. The total force developed by sidwall stresses can be estimated as 
2Cw u$ h, L ,  where C, is a drag coefficient that would be at most 0.025 (Schlichting 
1975). Since the force applied by the belt to the fluid was u: BL, where B is the width 

14-2 
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of the belt, the neglected sidewall stress would have been only 2Cw h,/B x 0.02 as 
large as the applied stress. 

Equation (6) also assumes that the free surface is flat at steady state. Because the 
free-surface pressure gradient at  steady state balances the small, laminar shear-stress 
gradient in the fluid above the mixed layer, this assumption leads to an error that 
is very much smaller than errors introduced by neglect of advective accelerations and 
sidewall stresses (Monismith 1983). 

Errors in the calculated stress arise mainly from the accuracy with which the 
perturbation density field can be measured. It is shown in Monismith (1983) that 
errors in calibration and probe position lead to errors in calculating T~ that are 
roughly 20 yo of 70 itself. Both of these experimental errors were partially corrected 
for by noting any zero-offsets appearing in the stress histories. Hence, their combined 
effect would have been much less than estimated above. 

The shear velocity was generally 543% of the belt velocity in the present 
experiments, consistent with the observation that in wind-driven flows the surface 
drift velocity is generally 20 u* (Fitzgerald & Mansfield 1965; Keulegan 1951). As (6) 
is not valid once full upwelling has taken place (the free-surface pressure gradient 
is no longer negligible), i.e. when W < 1,  it was necessary in some cases to estimate 
the shear stress using a value of the drag coefficient estimated from measurements 
of the shear stress at  similar mixed-layer Reynolds numbers ( V ,  h, /v) .  

3. Experimental results 
3.1. Two-layerJlows, W > 2 

According to the theory discussed in Q 1,  the response of a two-layered fluid at W > 1 
to an impulsively applied wind stress should consist of a decaying internal seiche and, 
in the absence of any two-dimensional effects, a slow deepening of the mixed layer 
by stirring. As observed, internal seiches were a prominent feature of the fluid 
response, both when the stress was applied and when it was removed. However, they 
were accompanied by considerable distortions of the interface, transient, jet-like 
flows in the interface, and partial upwelling. 

The dynamic response is neatly summarized by the time history of the shear stress 
calculated using (6) which is shown as figure 4. Upon start-up of the belt, there is 
both a net force, directed towards x = 0, and a set of decaying oscillations at a period 
of approximately 100 s, which is the first-mode internal seiche period (T,). When the 
belt is stopped, the net force drops to 0 and a new set of oscillations begin. Although 
the density field is strongly disturbed from its one-dimensional state, both the period 
and amplitude of these oscillations are in excellent agreement with both the two-layer 
theory and the normal-mode theory for continuously-stratified fluids (Monismith 
1986). 

Once the belt was set in motion, a boundary layer several millimetres thick 
developed adjacent to the belt. Visualization of the flow using dye streaks showed 
that the velocity of the fluid within the boundary layer varied between the belt speed 
and zero. After several seconds (as seen at z = !jL) an opposing flow, nearly uniform 
with depth at  a speed of approximately 3-5% that of the belt itself, developed 
outside the boundary layer. This flow is sketched in figure 5 ( a ) .  

After approximately !jT,, the return flow became concentrated in the top of the 
mixed layer, as is sketched in figure 5 ( b ) .  This flow appeared turbulent and always 
originated at  the downwind wall (z = 350 cm). The concentrated return flow appeared 
to plunge as i t  flowed upwind, and was incorporated into the mixed layer within 20 
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FIQURE 4. Time history of u$ in experiment 8 ( W  = 3.9, two layers) calculated according to (6). 
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profile for t > iq showing jet-like flow in the interface when W > 1. 
FIQURE 5. (a) Velocity profile when t @ showing initial barotropic flow. ( b )  Velocity 

or 30 cm of the upwind (z = 0) wall. The plunging of this flow can be attributed to 
the tilting of the isopycnals close to the mixed-layer base. Based on shadowgraph 
observations, an example of which is shown in figure 6, the interface always appeared 
to surface. 

The effect of the concentrated return flow was to sharpen the interface at the 
downwind end and to diffuse it a t  the upwind end, as shown in measurements of the 
density field. Figure 7 (a)-(d) shows contour plots of the density field during the initial 
phase of experiment 8 ( W  = 3.8).  Tilting of the interface by the internal seiche is 
evident in figure 7 ( a )  ( t  = 0 . 3 2 q ) .  Between t = 0.32T, and 0.96T, the interface 
underwent a remarkable transformation : at x = 300 cm (0.85 L )  : it decreased in 
thickness from 5 cm to less than 5 mm (filtering involved in producing the contour 
plot tends to obscure how sharp the interface was at the upwind end) while at  
z = 32 cm (0 .08L)  it expanded until it filled the lower two-thirds of the water 
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x = 0.30L 

FIGURE 6. Shadowgraph of upwelling region for two-layer flow at W > I .  This photo shows the 
steady-state density field during experiment 5 ( W = 8) in the region 0 < x < 0.25 L. The interface 
intersecting the belt near x = 0 has a density jump that is approximately 5% of the total density 
contrast between the layers. 
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FIQURE 7. Contours of the density field measured in experiment 8 ( W  = 3.9, two layers) while the 
belt was running. The belt is on the bottom of the tank and moves from left to right. The times 
are as follows: (a) 0.32T, ,  (b) 0.64T,, ( c )  0.96T,, and (d )  8.0T,. 
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column. Plots of the density field at later times showed that the interface continued 
to sharpen (and diverge) until t x 1.5 T,. 

Figure 7 (d) shows a picture of the density field at t = 8.3 T,; this may be taken to 
represent steady-state conditions, those conditions which vary on a timescale much 
longer than T,, but are set-up in a time O(T, ) .  None of the sets of profiles taken after 
t x 1.5 T,, differ very much from those making up figure 7 (d). The interface does not 
tilt bodily along the length of the tank; the depth of the 10.5 vT contour (where vT 
is taken to mean p- 1000 [kg m-3]), that contour line closest to the edge of the mixed 
layer, varies by 12 cm, while the 3 v t  contour is virtually flat. Hence the two-layer 
theory is inadequate as far as prediction of the steady-state density field is concerned. 
The fact that Wu (1977) was able to describe his observations using a two-layer 
theory is probably due to the fact that his experiments were performed with 
considerably sharper interfaces than those in the present study. Furthermore, Wu 
did not measure the density field directly in his experiments and therefore would not 
have detected the changes in interfacial thickness and density jump measured in the 
present experiments. 

Although the density field appeared nearly two-dimensional, the velocity field at  
steady state was observed to be three-dimensional. Near the endwalls, velocities in 
the direction perpendicular to the sidewalls were comparable to velocities in the 
direction parallel to the sidewalls. Koseff & Street (1985) emphasize the three- 
dimensional nature of the velocity field in their stratified cavity-flow experiments. 

The occurrence of upwelling is best illustrated in figure 8 which plots mixed-layer 
density for different values of 2, as functions of time during experiment 8. Here 
mixed-layer density is defined as the average density of fluid that is located no more 
than 1 cm from the belt. In response to application of the stress, a horizontal density 
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FIQURE 9. (a) Superposition of initial (-) and final (----) density profiles in experiment 8. 
( b )  Net density difference due to mixing, as a function of height for experiment 8. 

gradient (averaging about 1.5 x lo-' kg mP4) is set up in the mixed layer. This 
gradient is maintained while the stress continues to be applied to the fluid, but 
disappears when the stress is removed. Most importantly, changes over time of 
mixed-layer density are independent of position ; the mixed-layer density gradient 
is thus constant throughout the experiment. This gradient contributes significantly 
to the pressure gradient in the mixed layer, providing an average net force of roughly 
1.5 x N m-l (based on an average mixed-layer depth of 10 cm) out of the total 
of 8 x 

When the belt was stopped, both a decaying seiche and, once again, an interfacial 
jet were observed as the fluid returned to a state of horizontal homogeneity. Further 
details of the unsteady response, both to application and removal of the stress can 
be found in Monismith (1986). 

The net effect of having applied a stress to the fluid for a finite length of time 
(931 s), can be seen in figure 9(a) and (b )  which show firstly a superposition of the 
initial and final profiles and secondly, the net change in the density profile, derived 
from figure 9 (a) ,  plotted as a function of height. The latter represents the effective, 
time-averaged, vertical buoyancy flux. In  contrast to observations made in one- 
dimensional entrainment experiments (Linden 1979; Fernando & Long 1983), a 
comparison of the initial and final profiles fails to show any sharpening of the 
interface; the effective buoyancy flux does not, as is commonly assumed in one- 
dimensional mixing models, vanish above (below) the mixed-layer base. 

N m-l provided by the perturbation density field. 

3.2. Two-layers, 1 < W < 2 
When 1 < W < 2, the initial seiche was overdamped. This is shown in figure 10, the 
stress time series for experiment 22 ( W  = 1.7,h1 = hz) .  For this range of W the 
interface was observed to tilt until i t  nearly reached the belt (according to linear, 
two-layer theory when W = 1 ,  the interface just reaches the stressed surface at 
t = +T,) near x = 0 and then to rebound to its equilibrium position. Figure 11 is a 
contour plot of the steady-state density field in experiment 22. The interface is sharp 
over most of the length of the tank; only for x < 0.2 L does the interface begin to 
diverge. It seems plausible that decreasing W has the effect of suppressing interfacial 
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FIGURE 10. Time history of u; in experiment 22 ( W = 1.7, two layers) calculated according to (6). 
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FIQURE 11. Contour plot of the steady-state density field measured in experiment 22. 

divergence (see Monismith 1986 for further discussion of this point in connection with 
application of normal-mode theory to the present set of observations). Time series 
of the mixed-layer density for experiments in this range of W were remarkably 
similar to those measured at higher W and will not be shown here. 

3.3.  Linear stratification, W > 1 

There was one major difference between experiments with linear stratifications and 
those with two-layer stratifications : in the experiments with linear stratifications, 
there was always substantial mixingassociated with the initial mixed-layer formation. 
In  fact the value of W calculated using mixed layer properties must be identically 
zero (ideally) if the stratification is linear, as both g’ = 0 (no density jump) and h, = 0 
(no mixed layer). However, as mentioned in $2, W was calculated using h, = +H and 
g’ = +PH. 
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FIQURE 12. Shadowgraphs of the centre half (0.25 L > x < 0.75 L )  of the test section during the 
initial phase of experiment 32 ( W  = 1.7,  linear). The times are as follows: (a) t = O.O8T,; ( b )  
t = 0.13q; ( c )  t = 0.18T,; ( d )  t = 0.24T,; ( e )  t = 0.29%; and (f) t = 0 . 3 4 q .  The dye streaks show 
the intense jet that developed above the mixed layer. 

Figure 12 (a)-(f) shows a series of shadowgraphs which include dyestreaks indicat- 
ing the velocity profiles at various instants during the start-up phase of experiment 
32 ( W = 1.7). Immediately after the belt was set in motion, the flow appeared baro- 
tropic. As in the two-layer case, a concentrated flow then developed rapidly above the 
mixed layer, giving the impression that flow above the mixed layer was directed 
towards an imaginary sink located on the belt near x = 0. 

Density measurements made in experiment 32 will be used to demonstrate the 
evolution of the density field when the stratification is linear. Figure 13 (a) ( t  = 0.3 T,, 
where T, = 2L/(NH/n;)) shows the initial development of the mixed layer. It is 
apparent from this plot that  the initial tilting of the interface (and other isopycnals 
as well) was quite asymmetric : vertical displacements of the isopycnals outside the 
mixed layer were 2 or 3 cm at mid-depth for x > $L while they were less than 1 cm 
for x < +L. 

(figure 13b), the mixed-layer depth varied between 0 and 10 cm along 
the length of the tank, giving an average depth of approximtely 5 cm at that time. 
Figure 13 (c) (t = 1 .O TI) shows that as upwelling proceeded, the average mixed-layer 
depth continued to increase while, a t  the same time, the fan-like structure of the 
density field observed in two-layer flows began to emerge. Figure 13(d) ( t  = 6.1 T,) 
shows the structure of the quasi-steady-state density field in experiment 32. Its most 
striking feature is the flatness of isopycnals outside the mixed layer and interface, 

By t = 0.5 
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indicating the fluid above the mixed layer must have been nearly at rest, since the 
lack of isopycnal tilt also implies a lack of pressure gradient. 

-. . . .  . , - .  . . .  . " A. n .. . . 1 . . 1 . 
Figure 14 (a)-(d) shows complete Sets 01 profiles 01 the quasi-steaay-state density 

field for the following four experiments with linear stratifications : experiment 29 
( W  = 12), experiment 28 ( W = 4), experiment 30 ( W  = 2.5), experiment 32 
( W  = 1.7). These profiles represent the condition of the density field after initial 
upwelling and mixing were complete, but before weak, sustained upwelling (as seen 
in figure 8) and other means of mixed-layer deepening had sensibly modified the 
density field. The similarity of the 4 sets of profiles is striking. For the sake of 
comparison, a Wedderburn number, W, based on the average interfacial density 
jump, (Ap), and average mixed-layer depth, (h) was computed (using ( 5 ) )  for each 
of these experiments. The results of this computation are presented in table 3. 

All four experiments give values of W, very nearly equal to 1. In  each of the 
experiments, initial deepening was rapid until the average mixed-layer depths were 
approximately those recorded in table 2. The observed values of ( h ) / H  can be easily 
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FIGURE 14. (a) Density profiles at steady state: experiment 29 ( W = 12). The profiles were taken 

and -, x = 0.8 L. The symbols have the same meaning in ( b )  to ( d ) .  (b)  Density profiles at steady 
state: experiment 28 (W = 4). (c) Density profiles at steady state: experiment 30 ( W = 2). ( d )  
Density profiles at steady state: experiment 32 ( W, = 1.7) .  

at -. . . .- , x = 0.1 L ;  -. * .-, x = 0.2 L ;  -. .-, x = 0.3 L ;  -.-, x = 0.4L; ----, x = 0.6L; 

accounted for as follows: if a one-dimensional mixed layer of depth h were to  form 
in an initially linearly stratified fluid, g’ = iN2h; thus W, = N2h3/(2u2, L) .  Setting this 
equal to 1 gives h 

- H = (2w)-4. (7) 

Predictions of the mixed-layer depth made using (7)) are also shown in table 3; they 
agree with the observed average depths. Thus, in a linearly-stratified fluid, the mixed 
layer deepens rapidly until W x 1 .  If the experiments had been run for much longer 
times, larger values of W, would have been observed as W increases when the mixed 
layer deepens. 

As shown in @3.1 and 3.2, the development with time of the mixed-layer density 
is a good indicator of the upwelling process. Figure 15 (a) shows a plot of mixed-layer 
density as functions of time at the six profile stations used in experiment 29 ( W  = 12). 
Even a t  this large value of W, large horizontal density gradients in the mixed layer 
are created by upwelling. The pattern in this case is somewhat different from that 
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<AP)glP ( h )  u i  
Experiment W cm s-2 cm om2 s - ~  K (hllH),bS (h1IH)cak 

29 12.0 1.6 14.0 0.2 1 .o 0.33 0.35 
28 4.0 1.6 14.0 0.9 1 .o 0.56 0.50 
30 2.5 2.0 10.0 0.7 0.8 0.50 0.59 
32 1.7 2.5 10.5 0.9 0.9 0.60 0.66 

TABLE 3. Average W at steady state in a linearly-stratified fluid 
All symbols defined in text. 

shown in figure 8 as in this case the density gradient decays with time, at  least until 
approximately T,, at which time the gradient appears to stabilize. 

Figure 15(b), a plot of mixed-layer density in experiment 32, also shows the 
exponential decay of the horizontal density gradient seen in figure 15(a) ,  but in 
addition shows somewhat more clearly, that after this decay, the gradient becomes 
constant while the actual mixed-layer density continues to decrease. Thus if the 
stratification is linear, large horizontal gradients are created initially by upwelling. 
These weaken with time, eventually reaching an equilibrium point where they then 
evolve in the same fashion as is observed for two-layer flows; i.e. the upwelling 
buoyancy flux balances the longitudinal buoyancy flux, causing the mixed-layer 
density to change uniformly along the tank. 

3.4. Upwelling at low Wedderburn number, W < 1 

When W < 1, tilting of the interface in a two-layered fluid is severe enough for total 
upwelling to occur. In lakes, this means that hypolimnetic water flows up to the 
surface, replenishing fluid that is advected downwind in the surface layer. In these 
experiments, it means that fluid from the upper layer reaches the belt at or near 
x = 0, thc ‘upwind ’ end ofthe tank. While the theory (SI) predicts rapid, shear-driven 
deepening of the mixed layer, the present experiments show another, different mixing 
mechanism. Where the interface intersects the belt, a front develops in which there 
is intense mixing due to advectively-created density inversions; the effect of this local 
mixing is then spread throughout the rest of the mixed layer by shearflow dispersion. 
This mixing mode starts as soon as the interface intersects the belt, and mixes out 
all but a small fraction of the initial density difference in the mixed layer at a timc 

0.03 L2 Pm=---, 
h2 u* 

in agreement with the shearflow dispersion theory given in SI. 
To illustrate the development over time of the density field when W < 1 ,  profiles 

(figure 16 ( a - d  )) and contours (figure 17 ( a 4  )) from experiment 24 ( W = 0.45) are 
presented. In  this case, the contours are made up using monotonic versions of the 
profiles, so that none of the density inversions present in the profiles are present in 
the contours. The contours do however represent the mean state of the density field, 
as the density inversions tended to be short-lived. 

The initial profile can be seen in figure 16 (a)  ; the interface occupies approximately 
20 yo of the total depth (i.e. 2 cm). The first contour, figure 17 (a ) ,  taken at  t = 0.35 
shows the large-scale tilting of the interface. Somewhat unexpectedly, the centre 
region is tilted more severely than either of the two ends. The outer edge of the 
interface has begun to intersect the belt, and the l o g ,  contour has been stripped 
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FIGURE 15. ( a )  Mixed-layer density as functions of time during experiment 29 at . . . . , 5 = 0.10 L ;  
- ..-, ~ = 0 . 2 0 L ;  -.-, ~ = 0 . 3 0 L ;  ----, z = O . ~ O L ;  * . . . .  ., s=O.6OL;  and -, 
2 = 0.80 L. ( b )  Mixed-layer density as functions of time at various locations along the axis of the 
tank during experiment 32. The symbols have the same meaning as those in (a) .  
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FIQURE 16. Vertical profiles of density during the initial phase of experiment 24. The profiles were 
taken at the same locations as those shown in figure 14(u-d). These sets of profiles were taken 
at (a) t = O.OOTl; ( b )  t = 0.27T1; (c) t = 0.53T1; and ( d )  t = 0.70T1. 
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away from the interface. By t = 0.5 T,, (figure 17b), the entire interface intersects the 
belt between x x 50 and 100 cm and begins to disintegrate. Figure 17 ( c )  shows that 
by t = 0.7 T,  a sharp front has developed near x = 100 cm. As the experiment 
proceeds, the front diffuses and more and more of the isopycnals in the interface are 
stripped away ; by t = 1 .O T,  (figure 17d ), density differences in the mixed layer are 
comparable to those existing between the two layers. 

The quasi-state flow pattern in low- W experiments was similar to that observed 
in higher W experiments. Figure 18 shows a sketch of the flow pattern which created 
the inversions seen in the lower part of the water column in figure 16(c and d). The 
upwind flow advected heavier fluid upwind as the downwind flow advected lighter 
fluid downwind. A shadowgraph of the upwelling region (taken in experiment 18, 
W = 0.4), figure 19, shows the intense mixing that took place as these inversions 
collapsed and new inversions were created. This type of vertical mixing appears to 
be that described by Blanton (1973) &s edge leakage. The similarity between figure 
19 and figure 6, the corresponding picture for W > 1, should be noted. 

The exact form of stratification did not affect the response when W was sufficiently 
small. The single low W experiment, experiment 15 ( W  = 0.4), conducted with a 
linear stratification gave results indistinguishable from those obtained using two-layer 
stratifications at similar values of W. 

The present experiments do not show evidence of Kelvin-Helmholtz billowing. 
Several factors may have contributed to this. Consider experiment 24: using the 
results of SI, the maximum velocity difference would be calculated to have been 
11.2 cm s-l; according to Sherman, Imberger & Corcos (1978), 8, = 0.3(AU)2/g’ = 
0.3(11.2)2/10 = 3.8 cm. The initial thickness was 2 cm so that billowing should 
have been expected to double the interface thickness. This value must be reduced 
on two accounts. First, the nearest measuring station to x = $5 was at x = 0.4 L; 
this means a reduction of 20% in the maximum shear relative to the maximum 
shear at x = !jL (Spigel 1978). Secondly, the shear must be corrected for the effect 
of the steady circulation since it is set up in a time O(h,/u,) ,  and thus is set up 
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FIGURE 17. Contour plots of the density field during the initial phase of experiment 24. The 
contours show conditions existing at (a)  t = 0 . 3 5 q ;  ( b )  t = 0 . 5 3 q ;  ( c )  t = 0.70q; (d) t = 1.05q. 
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FIQURE 18. Sketch of velocity and density profiles in the upwelling region when W < 1 .  The shear 
flow in the horizontally-stratified mixed layer tilts the near-vertical isopycnals, creating density 
inversions which are unstable and lead to mixing. 
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FIGURE 19. Shadowgraph of the upwelling region in experiment 18 ( W  = 0.4, 2 layers). 
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FIQURE 20. Mixed-layer density as a function of time during experiment 24. 
The symbols have the same meaning as those in figure 15(a) and ( b ) .  

before the seiche-induced currents reach their peak. As it  is in opposition to the 
seiche-induced flow, the steady circulation, U, - 2u, (Bit, Berent & Vadja 1980; 
Keulegan & Brame 1960), reduces the interfacial shear, AU, and thus also reduces 
shear production of TKE and the size of Kelvin-Helmholtz billows (or suppresses 
them entirely). The net effect is to make these shear-driven mixing processes 
somewhat weaker than suggested by SI. Using the estimates given above, the exact 
reduction in AU is seen to depend on W, L / h l ,  and H / h 2 .  In  order that AU be 90 % 
of the value assumed by SI, it is necessary that 

According to (9), quite large values of the aspect ratio L / h ,  are required for the 
scaling of SI to be valid. For example, if W = 1, and H = 2h1, L / h ,  must be at  least 
800. This large value of L / h l  would most likely be found only in quite shallow layers 
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such as the shallow ( L / h ,  - 2000) diurnal mixed layer studied in Imberger (1985). 
The good agreement of the SI theory and Imberger’s (1985) observations is not 
surprising as the large values of L/h ,  reported by Imberger were observed in 
conjunction with quite small values of W(O(10-2)) ; given the observed aspect ratios, 
the observed values of W were well below that required by (9) to  ensure that the shear 
can be calculated without taking into account the reduction due to the steady 
circulation. 

Figure 20 plots the density in the mixed layer at each of the profiling stations as 
a function of time throughout experiment 24 and shows that the mixed-layer density 
plummets near 5 = 0 as upwelling proceeds. Near z = 280 cm, there is initially very 
little change in the mixed-layer density. Once upwelling is complete (at t x 0.7 q), 
with an e-folding time of 250 s, the density field exponentially approaches a uniform 
state. Using (lo), the formula of SI 95% completion of horizontal mixing, gives 
T, = 300 s. The experimental data shows T, x 1000 s. While SI assumed that as a 
result of shear stability and upwelling (acting in an unspecified fashion), the density 
would vary linearly in the x-direction and would not vary a t  all in the z-direction, 
in the present case the initial horizontal density gradient was more concentrated than 
SI assumed ; this would tend to  make T, larger than the value given by (9). Further, 
upwelling continued after mixing had begun, maintaining the density on the 
’windward ’ side of the front ; this too would tend to  increase T,. Given these two 
important differences between the experiments and what is assumed by the theory, 
the discrepancy between (9) and the observations is not large. 

4. Mixing mechanisms 
4.1. Longitudinal dispersion and horizontal mixing 

The experimental time series of mixed-layer density, samples of which can be found 
in figures 8, 15(a, b )  and 20, all show the presence of horizontal density gradients in 
the mixed layer. When W < 1, this gradient reaches a maximum value a t  t x 0.5 TI, 
and decreases thereafter. There is little vertical stratification, so that changes in 
mixed-layer density must be due to the horizontal buoyancy flux. 

When W > 1 ,  the horizontal density gradient does not vary with time; thus, the 
mixed-layer density decreases uniformly with time. This observation can be 
interpreted in two ways : firstly, horizontal variations in vertical mixing, due to  
substantial variations in the mixed-layer Richardson number (defined in (4)), are 
smoothed out by longitudinal dispersion, allowing mixed-layer deepening near 
x = L to keep up with deepening near x = 0. Alternately, a balance could exist 
between longitudinal dispersion which tends to eliminate any horizontal density 
gradients, and upwelling which tends to create those gradients. The mixed-layer 
density gradient would reach an equilibrium state in which any increase in upwelling 
would be suppressed by increased mixing while any increase in mixing and hence 
reduction in the gradient would be met by an increased upwelling flow. I n  the present 
experiments, the upwelling region (near x = 0) would act as a source of lighter fluid 
which would be ‘diffused’ (dispersed) downwind. This model is pursued in detail in 
the Appendix. 

Suppose that all of the observed change in mixed-layer density can be attributed 
to  upwelling and longitudinal dispersion. This is certainly the case for the W < 1 
experiments, and is a useful hypothesis for W > 1 experiments. Making this 
assumption. the longitudinal dispersion coefficicnt 6,  can be estimated as follows : 
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away from the upwelling region itself, it can be assumed that the change in 
mixed-layer density is due entirely to dispersion so that (SI) : 

4 P m  = Ezaizpm,  (10) 

where pm is the density of the mixed layer a t  some point x and at  time t. When written 
in finite-difference form, (10) gives an expression for E,, viz. 

where pi is the density at xi, p, is the density at x,, and (pi -p,) is the mean density 
difference between xi and x, during the time t and t + At. The results of this calculation 
are shown in table 4 for a number of experiments, representing two-layered and linear 
stratifications, and experiments with W < 1 and W > 1. Although there is substantial 
scatter, due both to the simple form of mixing assumed, and to a lack of horizontal 
resolution, the calculated dispersion coefficients appear to be independent of W and 
the type of stratification (no trend can be discerned), giving a mean value of 
E ,  x 3h,u,. This agrees reasonably well with the theoretical value of 6.3 suggcsted 
by SI. The constant of proportionality appearing in the expression for E ,  is discussed 
further in the Appendix. 

The timescale for horizontal mixing is not significantly affected by the difference 
between measured and theoretical values of E,, especially as Tm is dependent on the 
x distribution of density in the mixed layer. Hence, the value suggested by SI for 
Tm is adequate for estimating the time required to reach the equilibrium gradient. 

4.2. Mixed-layer deepening when W > 1 

The rate of change of mixed-layer density can also be used to calculate the effective 
rate of mixed-layer deepening when W > 1. Since the thickness of the interface did 
not change as a result of mixing in the experiments, conservation of buoyancy 
(assuming a linear equation of state for salt water) can be adequately approximated 

(12) 
by writing 

d 
dt -(Aph,) = 0, 

implying that 
2- dh h, dAp/dt _ -  
dt AP . 

All of the experiments were run for periods sufficiently short that initial values of 
h, and Ap can be used in (13) to calculate the average, effective rate of mixed-layer 
deepening, dh,/dt , from the observed rate of change of mixed-layer density (equivalent, 
to dAp/dt since the density of the upper layer fluid does not change). The results of 
this calculation are shown in figure 21 where dh,/dt, normalized by u*, is plotted, 
for two-layer experiments, as a function of Ri. Within the scatter of the experimental 
data, the results of the present study agree with those of Kranenburg (1985) which 
were obtained in a much larger flume. These data can be approximately represented 
by the formula 

(14) 

Equation (14) gives entrainment rates somewhat lower than suggested by Wu (1973) 
who found a constant of proportionality of 0.23 rather than 0.07. 

The measurements of the density field presented in 53 suggest that a plausible 

P- dh jdt - 0.07 Ri-l. 
u* 
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8 3.9 
20 1.7 
21 1.7 
22 1.7 
24 0.4 

28 4.0 
29 12.0 
32 1.7 

2L 
2L 
2L 
2L 
2L 

4.0 x 10-4 
1.3 x 10-3 
9.0 x 10-4 
9.0 x 10-4 
5.0 x 10-3 

L 1.2 x 10-4 
L 4.0 x 10-4 
L 1.0 x 10-3 

1.6 x lo-' 
6.1 x 10-l 
5.0 x lo-' 
2.0 x 10-1 
4.0 
2.0 
5.0 x lo-' 
2.0 
2.0 

2.8 
4.5 
4.0 
4.1 
1 .o 
2.5 
2.2 
1.5 
2.8 

TABLE 4. Observed dispersion coefficients 

For experiments with linear stratifications W in the table is calculated using total depth; 
2L = two-layer stratification and L = linear stratification; In experiment 24 the first row using 
z1 = 2.10 m and z2 = 1.40 m while the second row was calculated using z2 = 0.70 m. 

Ri 
FIGURE 21. Rate of mixed-layer deepening u, = dh,/dt, normalized by u*, plotted as function of 
the mixed-layer Richardson number, Ri = g'h2/u2, for two-layered experiments. 0,  this study (2L); 
KS, KL, Kranenburg (1985); -, 0.07 Ri-' = u,/u*. 

model for mixed-layer deepening would be one in which fluid at the edge of the mixed 
layer is dragged along the interface until, as the interface diverges and partially 
intersects the stressed surface (the belt in the experiments and the free surface in 
the field), it is brought to  the surface and is subsequently mixed downwind 
by longitudinal dispersion in the mixed layer. Such a model is presented in the 
Appendix. 

5. Discussion and conclusions 
The experimental results presented in the 1st three sections demonstrate the 

importance of both the Wedderburn number W ,  and the density distribution in 
.determining the dynamic response. While the theory of SI replaces the original 
parameters Ri and A with a single parameter, W ,  the experiments show that A must 
be rehained as an independent parameter if i t  is not greater than approximately 800. 
This is because, at smaller values of A ,  the unsteady, baroclinic shear is reduced by 
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the steady mixed-layer circulation. Furthermore, A also determines the relative sizes 
of the timescale for longitudinal dispersion and for the baroclinic response. However, 
it appears that the pair of parameters, ( W ,  A ) ,  is more useful for describing the flow 
than is the pair of parameters (Ri, A ) .  

While W can be used to delineate qualitatively different regimes of dynamic 
response and the extent of upwelling, the actual response depends on the distribution 
of the stratification. In the present experiments there are considerable differences 
between experiments with 6 / H  x 0.2 (those referred to as two-layer experiments in 
the body of the text) and experiments in which 6 / H  x 1.0 (those referred to as 
linearly-stratified experiments in the body of the text). In general, if the stratification 
is continuous, and if the Wedderburn number based on the overall density contrast 
and total depth, or a large part of the total depth (e.g. as in the present 
experiments), > 1, a new Ap, less than the total Ap, can always be chosen so as to 
make W, x 1. This behaviour was best exhibited by those experiments performed 
using linear statifications. The subscript m is used because this intrinsic Wedderburn 
number is, in effect, a mixed-layer Wedderburn number, as opposed to the bulk 
Wedderburn number which is defined using bvlk properties and which embodies 
first-mode dynamics. This is analogous to the case qf inertial selective withdrawal 
where if the Froude number determined by bulk parameters is less than the critical 
Froude number, a new Froude number defined using withdrawal layer thickness will 
be approximately equal to the critical value (Turner 1973). 

If W ,  calculated using bulk properties, < 1, the classical two-layer representation 
of upwelling is valid; if in addition, W Q  1,  the one-dimensional analysis presented 
in SI should be valid. If W <  1,  but still 0(1), the mixing process is highly 
two-dimensional; for the aspect ratios used in the present study, mixing is dominated 
by longitudinal dispersion of horizontal density variations created directly by 
upwelling, and by overturning in the upwelling region itself. 

An interesting case arises for a two-layer fluid in which initially hJH Q 1 and W 
is 4 1. A t  first the layer will deepen one-dimensionally, and so W will increase. If 
W becomes 0(1) before the wind stops or before the mixed layer hits the bottom of 
the reservoir, the subsequent response should be similar to the case in which 
W = O(  1)  initially, meaning that mixing must eventually become two-dimensional. 

The observations suggest that the response at W > 1 is much more complex than 
the two-layer model predicts. Although the interface sharpens, at  least at the 
downwind end of the tank, due to application of the stress, this sharpening is 
temporary and local; at the upwind end of the tank the interface is diffuse. When 
the stress is removed, the interface rethickens at the downwind end and resharpens 
at  the upwind end. Density distributions similar to those seen in figures 9(d) and 
15(d) have been observed in lakes by Wedderburn (1912), Mortimer (1952), and, more 
recently Imberger (1985) and in those numerical simulations of the response of 
stratified lakes to wind stresses reported by Thompson & Imberger (1980) and by 
Church & Thompson (1982). 

These distortions of the interface have little to do with mixing, but instead, 
represent the dynamic adjustment of the density field to the applied stress. 
Distortion of the interface can, in principle, be accounted for by considering a 
three-layer model of the stratification (as in Csanady 1982, or Monismith 1985). 
However, as shown in Monismith (1986), the observations of the set-up of the 
divergent interface are not entirely consistent with the results of the linear, 
normal-mode analysis. It seems likely that a numerical solution may be required to 
determine the exact mechanism of interfacial distortion. Furthermore such simula- 
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tions would be of considerable use in determining the effects the geometry of the 
endwalls at x = 0 and x = L has on the core flow (the horizontal flow away from the 
up- and down-welling regions) since the laboratory box is a far cry from the complex 
basin shapes found in nature. However, barring the possibility that changing the 
end-wall geometry effects major differences in the core flow, it should be concluded 
that when a stratified lake is subjected to wind stresses, and if W > 1, those 
isopycnals closest to the free surface will be affected most. 

Upwelling appears to play a major role in determining the rate of mixed-layer 
deepening. For W > 1 ,  the rate of change of mixed-layer density was uniform along 
the length of the tank; this observation could plausibly be described as the result 
of a combination of upwelling and longitudinal dispersion. A simple model of this 
process, one in which the upwelling buoyancy flux is specified at x = 0 and is assumed 
to be switched on at  t = 0 and to be constant thereafter, shows that the density 
gradient in the mixed layer evolves on a timescale of (Lz/eZ).  What observations are 
available are in quite good agreement with the theory. However, while the present 
experiments and theory do not conclusively prove that entrainment across the 
interface proper is not important, they do show that if results from experiments such 
as these are to be used in the formulation of models of mixed-layer deepening in lakes 
and reservoirs, proper account must be taken of the effects of upwelling. 
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Appendix: A model for deepening due to upwelling when W > I 

By J. Imbergert and S. Monismith 
The results of the investigation described in the main part of this paper, and the 

measurements reported in Keulegan & Brame (1960) and Kranenburg (1985) can be 
used to formulate a simple model of the effect of upwelling on mixed-layer deepening. 
All of the experimental data support the following conclusions concerning upwelling 
and mixed-layer deepening in two-layered fluids (two layers separated by an 
interface having finite thickness) : 

(a) The interface tilts and opens up a t  the upwind end over a period of time 
approximately equal to the internal seiche period (given by (3)). The data suggest 
that the isopycnals are almost horizontal at the bottom of the interface, but slope 

t Centre for Water Research, University of Western Australia. Nedlands, WA 6009, Australia. 
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FIQURE 22. Definition sketch for model of mixed-layer deepening due to upwelling. 

upward considerably at the top of the interface. A weak, horizontal density gradient 
is established in the mixed layer by a combination of upwelling and horizontal 
variations in turbulent entrainment. 

(b) The velocity profile in the surface layer is such that the velocity of the stressed 
surface is approximately 20u, and about 2u, at the interface. This observation 
differs from the assumption made by SI who assumed that the recirculating flow in 
the mixed layer could be neglected for W > 1. As pointed out in $3.4,  neglect of the 
steady velocity field for times less than is only permissible when the mixed-layer 
aspect ratio (Llh , )  is large (e.g. O(103)). 

(c) The upwelling region itself is confined to the upwind end of the basin. The 
density in the surface layer increases with time; for t 9 T,, the shearflow dispersion 
timescale, atp is nearly independent of 2. 

( d )  The entrainment law which best fits the experimental data is 

= c u Ri-l, 
dt ' *  

where C ,  is a constant between 0.07 (Kranenburg 1985 and this study) and 0.23 (Wu 
1973). 

These conclusions permit the construction of a simple model of upwelling and 
mixed-layer deepening for reservoirs when W > 1. A definition sketch for this model 
is shown in figure 22. Upon application of the shear stress the interface tilts and 
spreads ; since tilting and spreading are comparable, 

where 6 is as shown in figure 22, B, = {(p,  -po)  ghl}/po = gb h, is the initial value of 
the mixed-laysr buoyancy, h, is the initial mixed-layer depth, and g is the mean 
interfacial deflection (as given by ( 2 ) ) .  

Interfacial fluid is dragged to the surface in the upwelling region by the steady flow 
in the mixed layer. It then is mixed downwind by shearflow dispersion. A net 
entrainment law can be constructed using this combination of upwelling and mixing. 
The horizontal buoyancy flux in the interface is 
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where, if pa is the average density in the mixed layer, 9; = g(pl -pa)/po, and h is the 
mixed-layer depth at any time. It follows that 

dh 6u, 
dt L ' 

_ -  -- 

If 6 satisfies (A 2) substituting (A 2) into (A 4) produces a result consistent with (A 1). 
Thus, the Ri-' entrainment law can be arrived a t  without invoking interfacial 
entrainment ; instead, it is the consequence of upwelling. 

The buoyailcy flux (given by (A 3)) introduced into the main part of the mixed 
layer at  the upwind end by upwelling is mixed downwind by shear flow dispersion. 
Thus, the perturbation buoyancy field in the mixed layer gk(x, t )  = (p(x, 0, t) -po)  g/po 
satisfies the diffusion equation (Fischer et al. 1979) : 

where 

a, 9; = 8, %x 9 k  
E ,  = C, hu, 

is the effective diffusion coefficient. The coefficient C, depends on the shape of the 
velocity profile and on the distribution and magnitude of the vertical diffusivity (ez) .  
SI estimated that C, x 6, which is the value Elder (1959) derived for the log profile 
characteristic of two-dimensional open channel flow. However, C, will remain 
unspecified for the moment. 

The width of the end region, 1, is approximately h,, as in this region vertical and 
horizontal velocities are comparable. In effect, the upwelling region is just that region 
where the upwind flow in the mixed layer and interface is turned around and 
redirected downwind (as in the case of cavity flow studied by Cormack, Leal & 
Imberger 1974). An upper bound on 1 can be obtained by noting that in the upwelling 
region, the flow is locally unstable because the upwelled fluid is forced to flow over 
lighter fluid. Hence, 1 is also the distance travelled by a particle as it falls a distance 
+h,, the distance from the surface to the point of zero horizontal velocity, under the 
influence of a buoyancy force which depends on x and the buoyancy gradient in the 
upwelling region. In terms of the upwelling buoyancy flux, @, the length 1 can be 
shown to be (assuming an average surface velocity of 4u,) : 

Using (A 3), 

thus, 

Using typical values of C, = 0.07 and C,  = 6, 1 is seen to be approximately 
4h,(h,/L)i, i.e. proportional to h, with a weak dependence on (h,/L). 

A simple quantitative model of how upwelling leads to mixed-layer deepening can 
be formulated by assuming that initially the mixed layer is homogeneous and by 
modelling the effect of upwelling as an impulsively -started, and later constant 
buoyancy flux of strength p at x = 0. Thus, the temporal and spatial variations of 
gC, can be found by solving (A 6) subject to the following boundary and initial 
conditions : 

(A l l a )  

(A 116) 

and gL(z, 0) = 0. (A l l c )  

ax gAl(0, t )  = (P/E,)  H ( t )  ; 

ax g&, 1 )  = 0 ; 
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0 0.2 0.4 0.6 0.8 1 .o 

FIQTJRE 23. Curves of the solution (A 12) for r = gk(z, t ) / ( @ ~ ; ~ )  as functions of z a t  different 
values of qr, = L / ( E ~ ~ $ .  

The required solution can be found in Carslaw & Jaeger (1978) as 
Q) 

gk(x,  t )  = 2P(t/e,)t X [ierfc { ( 2 n L + L - x )  (2(ez t)t)-'} +ierfc{(2nL+z) (2(e,  i$)-l}], 
n-0 

(A 12) 

where ierfc = {exp ( - x2) /n t }  - z erfc (z), and erfc is the complementary error function. 
Equation (A 12) is plotted in figure 23 in terms of the quantity r = qk(q t )  4 P - l  t-4 
for different values of r ] ,  = L / ( e , t ) f .  When comparing experimental data with this 
solution, an allowance must be made for the fact that horizontal density gradients 
are created during the initial period of set-up by upwelling and by shear-driven 
entrainment, i.e. q k ( x ,  0) = f(z). This can be done by adjusting the time origin either 
through addition or subtraction of an offset. Ideally, this offset should be much less 
than the characteristic timescale of the dispersion process : 

L2 

In  addition, since /l depends on h, it  is not really constant throughout the experiment. 
The solution will only be valid for times somewhat less than 

the time required for the mixed-layer depth to double. The ratio of T, to Tv is 

if (Llh,) x ( C 2 / C l ) ,  T, is 0(1), and the solution given in (A 12) is only valid for t < T,. 
From the solution plotted in figure 23 it can be seen that the effect of the upwelling 

flux is not felt at z = L until t x 0.11 T,, at which time gk(L) x O.O4gk(O). The total 
density difference in the mixed layer reaches a maximum at t x 0.25 T,, remains 
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constant until t x T,, and then begins to drop as the mixed layer ‘heats up’. The 
solution for gL(0, t )  can be shown to be 

gL(0, t )  = 2pt:E;h:,  (A 16) 

for times less than 0.44 T,. Finally, gL (0, t )  will equal gi when 

If Tf > 0.44 T,, the factor appearing in (A 17) will not be in. 
The theory presented above can be compared with measurements reported in the 

body of the paper, with measurements taken by Keulegan & Brame (1960), and with 
measurements taken by Kranenburg (1985) ; in all three cases, measurements of the 
mixed-layer density a t  different locations and different times are available. To make 
the comparison, values of C, and C,, must first be chosen. In terms of the chosen 
values of these two constants, the observed value of r can be found to be: 

where gL is now calculated using measured values of p. The most convenient means of 
presenting the data is in terms of r/VL at different values of f = x / L  plotted as 
functions of T = t /T, .  

Figure 24 presents data from experiment 8 of this study converted according to 
(A 18), using C, = 0.07 (that value determined experimentally) and C, = 6. The 
densities measured a t  f = 0.08 and 0.87 asymptotically approach their theoretical 
values as diffusion smears away the initial effects of upwelling. It should be noted 
that the particular value of C, chosen is twice that which was estimated in $4.1. 
However, this value of C, gives a better fit of the data to the theory at both locations 
than either C, = 3 or 10. The value of ex derived by obtaining the best possible fit 
of the data to the theoretical curves should be considered equal in accuracy to the 
value of ex computed using a finite difference form of (A 6). 

Figure 25 shows the data from three experiments reported in Keulegan & Brame 
(1960), from two experiments reported in Kranenburg (1985) and, from experiment 
8 of the present study. In reducing these data, the following operations have been 
performed : 

(i) C, was first chosen to be 0.07 and, for all except experiment 8, C, was chosen 
to be 10; 

(ii) the resulting ‘raw’ curves were plotted; 
(iii) so as to best-fit the data to the theoretical curves, the dimensionless time was 

offset by an amount AT and C, was altered. 
The last step was interactive and was performed first for the data from the f 

position, say f,, closest to f = 0. Once a satisfactory fit was obtained for f,, the data 
at a second position, f, > 0.5, was then reduced using the final values of C, and AT. 
From trial and error, i t  became apparent that for each experiment analysed, a best 
set of values of (AT, C,, and C,) existed which appeared to minimize the differences 
between theory and measurements for both values off. In all cases, reasonable values 
of all three parameters were obtained: the time offsets were always less than 0.04 T,, 
and the entrainment coefficient C, was between 0.05 and 0.133, well within the range 
reported in the literature and cited above. The difference between values of C, chosen 
for the belt-driven flow and the wind-driven flows may reflect differences in the 
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FIGURE 24. Plot of values of (r/vL) calculated from densities at 5 = 0.08 and 6 = 0.87 measured 
during experiment 8 ( W  = 3.9) of this study. The theoretical curves are shown as the solid lines. 
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FIGURE 25. Plot of values of (T/vL) calculated from densities measured with correction for the 
initial conditions and adjusted for a best-fit of data at two values of 5. The solid lines are the 
theoretical solution while the symbols represent: 0 ,  experiment 8 this study, W = 3.9, AT' = 0.060, 
C, = 0.07, C, = 6; A, Keulegan & Brame (1960) W = 3.0, A7' = 0.015, C, = 0.11, C, = 10; 0, 
Keulegan & Brame (1960) W = 2.4, AT' = 0.025, C, = 0.1 1, C, = 10; 0,  Keulegan & Brame (1960) 
W = 1.5, A7' = 0.030, C, = 0.05, C, = 10; +, Kranenburg (1985) W = 3.7, AT' = -0.015, 
C, = 0.11, C, = 10; X ,  Kranenburg (1985) W = 2.3, A7' = +0.010, C, = 0.11, C, = 10. 

structure of those flow, especially in the way the shear stress and surface velocity 
vary with x. 

In summary, the comparison between theory and observations presented in figures 
24 and 25, is quite good. Unfortunately, no experimental results are available to 
describe the final phase of mixed-layer deepening, that which occurs after the surface 
density at z x 0 reaches p l .  If such observations were available, the mechanism of 
mixed-layer deepening by upwelling might be further clarified. 
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